The correct option is C equals 43 only
Let tan−1(x−1x+1)=A and tan−1(2x−12x+1)=B
Then tanA=x−1x+1 and tanB=2x−12x+1
A+B=tan−12336
⇒tan(A+B)=2336
⇒tanA+tanB1−tanAtanB=2336
⇒x−1x+1+2x−12x+11−x−1x+1×2x−12x+1=2336
⇒2x2−13x=2336
⇒24x2−23x−12=0⇒24x2−32x+9x−12=0
⇒(3x−4)(8x+3)=0⇒x=43,−38
But for x=−38, both terms of LHS are negative and hence, LHS is negative, while RHS is positive.
So, the only solution is x=43