If ∫π20 f(sin 2x) sin x dx=λ√24 ∫π40 f(cos 2x) cos x dx then the value of λ must be
I=∫π20 f(sin 2x) sin x dx . . . (1)
=∫π20 f(sin 2(π2−x))sin (π2−x)dx
=∫π20 f(sin 2x) cos x dx
2I=∫π20 f(sin 2x)(cos x+sin x)dx
2I=√2∫π20 f(sin 2x)cos(x−π4)dx
2I=√2∫π4−π4 f(sin 2(x+π4)) cos x dx
2I=√2∫π4−π4f(cos 2x)cos x dx
2I=2√2 ∫π40 f(cos 2x) cos x dx
∴ I=√2∫π40 f(cos 2x)cos x dx
λ=4