If the 2nd, 3rd and 4th terms in the expansion of (x+a)n and 240, 720 and 1080, find x,a,n.
It is given that
T2=240
T3=720
T4=1080
∴T2=nC1×xn−1×a=240
T3=nC2×xn−2×a2=720
T4=nC3×xn−3×a3=1080
Now,
T4T3=nC3×xn−3×a3nC2×nn−2×a2=1080720
⇒nC3anC2x=32
⇒n−3+12+1×ax=32
⇒n−23×ax=32
⇒ax=92(n−2).......(i)
and,
T3T2=nC2×xn−2×a2nC1×xn−1×a=720240
⇒nC2nC1×ax=3
⇒n−2+12×ax=3
⇒n−12×ax=3
⇒ax=6n−1.....(ii)
Comparing equation (i) and (ii), we get
6n−1=92(n−2)
⇒12(n−2)=9(n−1)
⇒12n−24=9n−9
⇒3n=24−9
⇒3n=15
⇒n=5
Putting n =5 in equation (ii), we get
ax=65−1
⇒ax=64
⇒ax=32
⇒a=32x
Now,
\)T_2 ={^nC_1} \times x^{n-1}\times a=240\)
⇒5C1×x4×(32x)=240
[∵n=5 and a=32x]
⇒x5=240×25×3
⇒x5=32
⇒x5=25
⇒x5=2
Putting x =2 in a=32x, we get
a=32×2=3
Hence, x =2, a =3 and n =5.