If the 6th, 7th and 8th terms in the expansion of (x+a)n are respectively 112, 7 and , 14, find x, a and n.
It is given that, T6=112, T7=7 and T8=14
We know that, for the expanssion (x+a)n
Tr+1Tr=n−r+1r.ax
∴ T7T6=n−6+16.ax [put r = 6]
⇒ 7112=n−56.ax
⇒ ax=42112 (n−5) . . . (i)
and T8T7=n−7+17.ax [put r = 7]
⇒ 128=n−67.ax
⇒ ax=14(n−6) . . . (ii)
⇒ 42112(n−5)=14(n−6)
[by Eqs. (i) and (ii)]
⇒ 4 × 42 (n - 6) = 112 (n - 5)
⇒ 168 n - 1008 = 112n - 560
⇒ 56n = 448 ⇒ n = 8
Putting n = 8 in Eq. (ii), we get
⇒ ax=18 ⇒x=8a
Now, T6= 8C5(x)3(a)5
⇒ 112=56(8a)3(a)5
⇒ 2=512a8
⇒ a8=1256
⇒ a=12
and n x=8×12=4
Hence, n = 8, x = 4
and a=12