If the 6th, 7th and 8th terms in the expansion (x+a)n are respectivley 112, 7 and 14, find x,a,n.
It is given that,
T6=112,T7=7,T8=14
∴T6=nCn−5xn−5×a5=112
T7=nCn−6xn−6×a6=7
and,T8=nCn−7xn−7×a7=14
Now,
T7T6=nCn−6xn−6×a6nCn−5xn−5×a5=7112
⇒nCn−6nCn−5×ax=116⇒n−6+1n−(n−5)+1×ax=116
[nCrnCr−1=n−r+1r] ⇒n−56×ax=116
⇒ax=616×1n−5
⇒ax=38×1(n−5)....(i)
and,
T8T7=nCn−7xn−7×a7nCn−6xn−6×a6=147
⇒T8T7=nCn−7nCn−6=ax=128
⇒nCn−7nCn−6×ax=128
⇒n−7+1n−(n−6)+1×ax=128
⇒n−67×ax=128
⇒ax=14(n−6)....(ii)
Comparing equation (i) and (ii), we get
38×1(n−5)=14(n−6)
⇒32×1(n−5)=1(n−6)
⇒3(n−6)=2(n−5)
⇒3n−18=2n−10
⇒3n−2n=18−10
⇒n=8
Putting in equation (i) we get
⇒a=x
Now, 8C5x8−5(x8)5=112
=56x885=112
⇒x8=48
⇒x=4
By putting the value of x and n in (i) we get
a=12
a=12 and x=4