The correct option is D log515
Given : ⎛⎜⎝3log3√25x−1+7+3−18log3(5x−1+1)⎞⎟⎠10
As 25x−1>0, 5x−1>0, so log function is defined for x∈R
We know that alogaN=N
So,
⎛⎜⎝3log3√25x−1+7+3−18log3(5x−1+1)⎞⎟⎠10=⎛⎜⎝√25x−1+7+(5x−1+1)−18⎞⎟⎠10
Now,
T9=T8+1=180⇒ 10C8(√25x−1+7)2⋅(5x−1+1)⎛⎝−1×88⎞⎠=180⇒ 10C8(25x−1+7)(5x−1+1)=180⇒ 45⋅25x−1+75x−1+1=180
Let t=5x−1, then
⇒t2+7t+1=4⇒t2−4t+3=0 (∵t+1≠0)⇒(t−3)(t−1)=0⇒t=1,3⇒5x−1=1,3⇒x−1=0,log53∴x=1,log515