The correct option is C 2+√3:2−√3
Given that A.M = 2 G.M
⇒a+b2=2√ab
⇒a+b=4√ab
Now, let us consider choice (c)
∴(2+√3)+(2−√3)=4√(2+√3)(2−√3)
4=4.1
4 = 4
Hence choice (c) is correct.
Alternatively: a+b=4√ab
⇒(a+b)2=16ab
⇒a2+b2+2ab=16ab
⇒a2+b2=14ab
⇒ab+ba=14
⇒x+1x=14 (∵ab=x)
⇒x2−14x+1=0
⇒x=14±√1922
⇒x=7±4√3
⇒ab=7+4√3=(2)2+(√3)2+4√3
ab=(2+√3)2=2+√32−√3
Now x=7−4√3
⇒x=2−√32+√3≠ab, since a should be greater than b.
Hence, x≠7−4√3