If the AM and GM of two positive numbers a and b are in the ratio m:n show that
a:b=(m+√m2−n2):(m−√m2−n2).
Let A and G be respectively the AM and GM of a and b. Then,
A=a+b2 and G=√ab⇒a+b=2A and G2=ab.Now, the equation having roots a and b isx2−(a+b)x+ab=0⇒x2−(a+b)x+ab=0⇒x2−2Lx+G2=0⇒x=2A±√4A2−4G22=A±√A2−G2⇒a=A+√A2−G2 and b=A−√A2−G2.Now m,A:G=m:nLet A = km and G = kn for some constant k. Then,ab=A+√A2−G2A−√A2−G2=km+√k2m2−k2n2km−√k2m2−k2n2=m+√m2−n2m−√m2−n2Hence,a:b=(m+√m2−n2):(m−√m2−n2).