If the angle between the asymptotes of hyperbola x2a2−y2b2=1 is π3. Then the eccentricity of conjugate hyperbola is
Open in App
Solution
We know that, angle between asymptotes of hyperbola is 2tan−1(ba) ∴2tan−1(ba)=π3 ⇒ba=tan(π6) ⇒ba=1√3 Now, eccentricity, e=√1+b2a2 ∴e=√1+13=√43 Let e′ be the eccentricity of conjugate hyperbola ⇒1e′2+1e2=1 ⇒1e′2+34=1 ⇒1e′2=14 ∴e′=2