As we know that angle between the two circles is given as-
cosθ=r12+r22−d2r1r2
Where,
r1= Radius of first ciircle
r2= Radius of second circle
d= Distance between the centre of two circles
Equation of first circles-
x2+y2−12x−6y+41=0
(x−6)2+(y−3)2−36−9+41=0
(x−6)2+(y−3)2=(2)2
Here,
r1=2
C1=(6,3)
Equation of another circle-
x2+y2+kx+6y−59=0
(x+k2)2+(y+3)2−(k2)2−9−59=0
(x+k2)2+(y+3)2=68+k24
Here,
r2=√68+k24
C2=(−k2,−3)
Now,
C1C2=√(−k2−6)2+(−3−3)2=√k24+6k+72
θ=45°(Given)
Therefore,
cos45°=4+(68+k24)−(k24+6k+72)2⎛⎝√68−k24⎞⎠
⇒1√2=6k√68−k24
⇒√68−k246k=√2
Squaring both sides, we have
⇒⎛⎜
⎜
⎜
⎜
⎜
⎜⎝√68−k246k⎞⎟
⎟
⎟
⎟
⎟
⎟⎠2=(√2)2
68−k2436k2=2
⇒68−k24=72k2
⇒289k24=68
⇒k=±√272289=±4√17
Hence the value of k is ±4√17.