If the angle between two tangents drawn from an external point P to a circle of radius a and centre O, is 60o, then find the length of OP.
Given: ∠APB=60∘
Consider ΔOPA and ΔOPB then
∠OAP=∠OBP [ Angles rights angled]
OP=OP [Common Side]
OA=OB [Radius]
Therefore, ΔOPA≅ΔOPB
So, ∠OPA=∠OPB=∠BPA2
∴∠OPA=602=30∘
Thus, from right angled triangle ΔAPO, we have
sin30∘=AOPO
⇒12=aOP
∴OP=2a