If the angle bwteen a line x=y−12=z−3λ and normal to the plane x+2y+3z=4 is cos−1√514, then possible value(s) of λ is/are
Consider the given line equation x=y−12=z−3λ and plane equationx+2y+3z=4.
Let θ be the angle between the line and normal to plane converting the given equations into normal form, we have
→r=0.ˆi+ˆj+3ˆk+β(ˆi+2ˆj+λˆk)
→r=ˆi+2ˆj+3.ˆk=3
Now,
→b=(ˆi+2ˆj+λˆk)
→n=ˆi+2ˆj+3.ˆk=3
We know that,
cosθ=∣∣ ∣∣ˆb.ˆn∣∣ˆb∣∣|ˆn|∣∣ ∣∣
=∣∣ ∣ ∣∣(ˆi+2ˆj+λˆk).(ˆi+2ˆj+3.ˆk)∣∣ˆi+2ˆj+λˆk∣∣∣∣ˆi+2ˆj+3.ˆk∣∣∣∣ ∣ ∣∣
cosθ=∣∣ ∣∣1+4+3λ√12+22+λ2√12+22+32∣∣ ∣∣=∣∣ ∣∣5+λ√5+λ2√14∣∣ ∣∣
But given that θ=cos−1(√514) ,so
coscos−1√514=∣∣ ∣∣5+λ√5+λ2√14∣∣ ∣∣
√514=∣∣ ∣∣5+λ√5+λ2√14∣∣ ∣∣
Taking square both sides ,we get
514=∣∣ ∣∣5+λ√5+λ2√14∣∣ ∣∣2=(5+λ)2(5+λ2)(14)
(5+λ)2(5+λ2)=5
25+λ2+10λ=25+5λ2
4λ2−10λ=0
2λ(2λ−5)=0
λ(2λ−5)=0
λ=0,λ=52
Ignore λ=0 as it is in denominator. Therefore,
λ=52