If the angle of elevation of a cloud from a point 200 m above a lake is 30∘ and the angle of depression of the reflection of the cloud in the lake from the same point is 60∘, then the height of the cloud above the lake is:
In △ABC′,
tan60∘=x+400AB
AB=x+400tan60∘=x+400√3
In △ABC,
tan30∘=xAB
AB=xtan30∘=x√3
∵AB=AB
⇒x√3=x+400√3
⇒x×√3×√3=x+400
⇒3x=x+400
⇒2x=400
⇒x=200 m
Hence, the height of the cloud above the lake is
200+200=400 m