If the angles (2a−10)∘ and (a−11)∘ are complementary, then find the value of a.
37∘
27∘
17∘
7∘
Given, the angles (2a−10)∘ and (a−11)∘ are complementary angles. ∴(2a−10)∘+(a−11)∘=90∘
⇒(3a−21)∘=90∘
⇒3a=111∘ ⇒a=37∘
If tan 2A = cot (A − 21°), where 2A is an acute angle, then ∠A = ? (a) 24° (b) 27° (c) 35° (d) 37°
If tan2A=cot(A−18∘), then value of A is ((A - 18) & 2A are acute angle)
If ∠P = 3x and ∠Q = 6x such that ∠P and ∠Q are complementary then the value of x is: