wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the angles of a triangle are in the ratio 1:2:4, then prove that
a2b2c2=(b2a2)(c2b2)(a2c2).

Open in App
Solution

A+B+C=A+2A+4A=7A=π
A=π7
Hence the angle are A=π7, B=2π7, C=4π7
Now by sine Rule asinA=λ (say)
R.H.S=λ6(sin2Bsin2A)(sin2Csin2B)(sin2Asin2C)
=λ6[sin(B+A).sin(BA)][sin(C+B).sin(CB)][sin(A+C).sin(AC)]
=λ6(sin3π7.sinπ7)(sin6π7.sin2π7)(sin5π7.sin3π7)
sin6π7=sin(ππ7)=sinπ7
sin5π7=sin(π2π7)=sin2π7
R.H.S=λ6(sin2π7.sin22π7.sin24π7)
=(λ2sin2A)(λ2sin2B)(λ2sin2C)
a2b2c2=L.H.S.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon