A+B+C=A+2A+4A=7A=π
∴A=π7
Hence the angle are A=π7, B=2π7, C=4π7
Now by sine Rule asinA=λ (say)
R.H.S=λ6(sin2B−sin2A)(sin2C−sin2B)(sin2A−sin2C)
=λ6[sin(B+A).sin(B−A)][sin(C+B).sin(C−B)][sin(A+C).sin(A−C)]
=λ6(sin3π7.sinπ7)(sin6π7.sin2π7)(sin5π7.sin3π7)
sin6π7=sin(π−π7)=sinπ7
sin5π7=sin(π−2π7)=sin2π7
∴R.H.S=λ6(sin2π7.sin22π7.sin24π7)
=(λ2sin2A)(λ2sin2B)(λ2sin2C)
a2b2c2=L.H.S.