x2+2x−3=kx+1
⇒x2+(2−k)x−4=0
Let x1 and x2 be the roots of above equation.
⇒x1+x2=k−2, x1x2=−4
Then A=x2∫x1[(kx+1)−(x2+2x−3)]dx
=[4x+(k−2)x22−x33]x2x1
=4(x2−x1)+k−22(x22−x21)−13(x32−x31)
=(x2−x1)[4+k−22(x2+x1)−13(x22+x21+x1x2)]
=√(x2+x1)2−4x1x2[4+k−22(x2+x1)−13((x2+x1)2−x1x2)]
=√(k−2)2+16[4+(k−2)22−13((k−2)2+4)]
=√(k−2)2+16[(k−2)26+83]
∴A is minimum when k=2
and Amin=√16×83=323