If the area bounded by the parabola y2 = 16ax and the line y = 4mx is a212 sq.units, then using integration, find the value of m.
Let y2 = 16ax ....(i), y =4mx ....(ii)
By (i) & (ii), (4mx)2 = 16ax ⇒x(m2x−a)=0
⇒x=0 or x=am2
Acc. to quest., area bounded by the curves = ∫am20[yi−yii]dx=a212
⇒4√a∫am20√x dx−4m∫am20 xdx=a212
83√a[x32]am20−2m[x32]am20=a212
⇒83√a[x32]am20−2m[x32]am20=a212 ⇒83√a[a32m3−0]−2m[a2m4−0]=a212
⇒(83−2)a2m3=a212 ⇒23×1m3=112 ∴m=2.