Let the vertices of triangle are A(2,1,3),B(a,0,2) and C(−3,−1,0)
⇒−−→AB=(a−2)^i−^j−^k−−→AC=−5^i−2^j−3^k⇒−−→AB×−−→AC=^i+(3a−1)^j−^k(2a+1)
So, Area of triangle =12|−−→AB×−−→AC|
⇒√1+(3a−1)2+(2a+1)22=√142
squaring both sides and simplifying,
⇒13a2−2a+3=14⇒13a2−2a−11=0⇒(13a+11)(a−1)=0⇒a=1,−1113