If the area of a triangle ABC is given by △=a2−(b−c)2, then tan(A2) is equal to
A
−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
14
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C14 ∵△=a2−(b−c)2 =(a+b−c)(a−b+c) We know that a+b+c=2s △=(2s−c−c)(2s−b−b) =(2s−2c)(2s−2b) =4(s−b)(s−c) We have √s(s−a)(s−b)(s−c)=4(s−b)(s−c) Squaring both sides we get s(s−a)(s−b)(s−c)=(4(s−b)(s−c))2 s(s−a)=16(s−b)(s−c) ⇒116=(s−b)(s−c)s(s−a) ⇒√(s−b)(s−c)s(s−a)=116 ⇒√(s−b)(s−c)s(s−a)=14 ⇒tanA2=14 ∴tanA2=14