Given, the area of the rectangle =9x2−12x−32
Now, we know that, (a+b)×(a−b)=a2−b2
9x2−12x−32 can be written as:
=(3x)2−2×3x×2+4−36=(3x−2)2−62=(3x−2+6)×(3x−2−6)=(3x+4)×(3x−8)
[1.5 Marks]
Since the area of a rectangle is Length × Breadth,
Therefore, from the above simplification, we can say,
Length =3x+4; and
Breadth =3x−8
[1 Mark]
Perimeter of a rectangle =2×(length+breadth)=2×(3x+4+3x−8)=2×(6x−4)=12x−8
[1.5 Marks]