The correct options are
A The locus of the point A is a circle.
C ∠BAC=π−tan−154
x2−9y2−8xy=0
Acute angle between the pair of lines is,
tanθ=∣∣∣2√h2−aba+b∣∣∣⇒tanθ=∣∣
∣∣2√42+9−8∣∣
∣∣⇒tanθ=54∴∠BAC=π−tan−154 [∵∠APO=∠AQO=π2]
Now, x2−9y2−8xy=0
⇒(x+y)(x−9y)=0⇒x+y=0, x−9y=0
Assuming Equation of line
OP:x+y=0OQ:x−9y=0
Let the coordinate of A=(h,k)
Coordinates of B:
Reflection of point A about the line OP:x+y=0
x−h1=y−k1=−2(h+k)12+12⇒x=−k, y=−hB=(−k,−h)
Coordinates of C:
Reflection of point A about the line OQ:x−9y=0
x−h1=y−k−9=−2(h−9k)12+92⇒x=40h+9k41, y=9h−40k41C=(40h+9k41,9h−40k41)
It is given that the base passes through (4,8).
So, 8+h4+k=9h−40k41+h40h+9k41+k⇒8+h4+k=50h−40k4140h+50k41⇒8+h4+k=5h−4k4h+5k⇒32h+40k+4h2+5hk=20h−16k+5hk−4k2⇒4h4+4k2+12h+56k=0⇒h2+k2+3h+14k=0
Therefore, the locus of vertex A is,
x2+y2+3x+14y=0
Hence, the locus of A is circle.