If the bisector of angle C of triangle ABC meets AB in D & the circumcircle in E then show that CEDE=(a+b)2c2
Open in App
Solution
Applying sine law in △BDE sinC2DE=sinAaca+b ...(1) (∵BD=aca+b) And Applying sine law in △CBE sinB+C2CE=sinAa ...(2) Divide (1) by (2) sinC2sin(B+C2).CEDE=a+bac.a ⇒CEDE=a+bc.2sin(B+C2)cosC2sinC =a+bc.sin(B+C)+sinBsinC=a+bc.sinA+sinBsinC ⇒CEDE=(a+b)2c2