wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the bisector of the angle A of triangle ABC meets Bc in D, prove that
a=(b+c)[1AD2bc]1/2

Open in App
Solution

From the ABC
BDDC=cb=ABAC
BD=ca(b+c)
DC=bb+c×a=abb+c
In ABC,cosB=a2+c2b22ac
In ABD,cosB=c2+BD2AD22c×BD
a2+c2b22ac=c2+BD2AD22c×BD
a2+c2b2a=c2+BD2AD2×BD
a2+c2b2a=c2+(ca(b+c))2AD2×(ca(b+c))
c(a2+c2b2)=(b+c)c2+c2a2b+cAD2(b+c)
ca2+c3cb2=c2b+c3+c2a2b+cAD2(b+c)
ca2+c3cb2c2b+c3c2a2b+c=(b+c)AD2
AD2=c2a2(b+c)(ca2cb2bc2)(b+c)2
AD2=c2a2bca2+b3c+b2c2c2a2+c2b2+c3b(b+c)2
AD2=c2a2bca2+b3c+2b2c2+c3b(b+c)2
AD2=bc[a2b2c22bc](b+c)2
AD2=bc[a2(b2+c2+2bc)](b+c)2
a2(b2+c2+2bc)=AD2(b+c)2bc
a2=(b2+c2+2bc)+AD2(b+c)2bc
a2=(b+c)2+AD2(b+c)2bc
a2=(b+c)2[1+AD2bc]
a= (b+c)2[1+AD2bc]
or a=(b+c) [1+AD2bc]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon