From the △ABC
BDDC=cb=ABAC
⇒BD=ca(b+c)
⇒DC=bb+c×a=abb+c
In △ABC,cosB=a2+c2−b22ac
In △ABD,cosB=c2+BD2−AD22c×BD
⇒a2+c2−b22ac=c2+BD2−AD22c×BD
⇒a2+c2−b2a=c2+BD2−AD2×BD
⇒a2+c2−b2a=c2+(ca(b+c))2−AD2×(ca(b+c))
⇒c(a2+c2−b2)=(b+c)c2+c2a2b+c−AD2(b+c)
⇒ca2+c3−cb2=c2b+c3+c2a2b+c−AD2(b+c)
⇒ca2+c3−cb2−c2b+c3−c2a2b+c=(b+c)AD2
⇒AD2=c2a2−(b+c)(ca2−cb2−bc2)(b+c)2
⇒AD2=c2a2−bca2+b3c+b2c2−c2a2+c2b2+c3b(b+c)2
⇒AD2=c2a2−bca2+b3c+2b2c2+c3b(b+c)2
⇒AD2=bc[a2−b2−c2−2bc](b+c)2
⇒AD2=bc[a2−(b2+c2+2bc)](b+c)2
⇒a2−(b2+c2+2bc)=AD2(b+c)2bc
⇒a2=(b2+c2+2bc)+AD2(b+c)2bc
⇒a2=(b+c)2+AD2(b+c)2bc
⇒a2=(b+c)2[1+AD2bc]
∴a=
⎷(b+c)2[1+AD2bc]
or a=(b+c)
⎷[1+AD2bc]