If the bisectors of two adjacent angles A and B of a quadrilateral ABCD intersect at a point O such that ∠C+∠D=k(∠AOB), then find the value of k.
In quadrilateral ABCD, Bisectors of ∠A and ∠B meet at O, such that ∠C+∠D=k(∠AOB).
∠AOB=180∘−(12∠A+12∠B)
= 180∘−12(∠A+∠B)....(i)
But k(∠AOB)=∠C+∠D
∴∠AOB=1k(∠C+∠D) ....(ii) From (i) and (ii)
180∘−12(∠A+∠B)=1k(∠C+∠D)12(A+B)+12(∠C+∠D)−12(A+B)=1k(∠C+∠D) (∵∠A+∠B+∠C+∠D=360∘)12(∠C+∠D)=1k(∠C+∠D)Comparing , we get1k=12⇒k=2