wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the chord of contact of tangents from a point P(x1,y1) to the circle (xa)2+y2=a2 touches the circle (xa)2+y2=a2, then find the locus of (x1,y1).

Open in App
Solution

Given, equation of the circle is given as
(xa)2+y2=a2 ………..(1)
x2+a22a+y2=a2
x2+y2=+2a
x2+y2=(2a)2
Equation of the chord of contact of the circle (1) wrt to P(x1,y1) is given by
x1x+y1y=(2a)2
x1x+y1y=2a
x1x+y1y2a=0 ……….(2)
Since the line (2) touches the circle (xa)2+y2=a2, we get
a=|x1a+y10+(2a)|x21+y21
a=|ax12a|x21+y21
Squaring both sides we get
a2=(ax12a)2(x21+y21)
a2(x21+y21)=(ax12a)2
a2x21+a2y21=a2x21+4a24a2x1
a2y21+4a2x14a2=0
a2(y21+4x14)=0
y214x14=0
Locus of P(x1,y1) is given by, y2+4x4=0
[Selling x=x1,y=y1].

1215685_1301063_ans_5ab3499e50314767abbaf447bd97eea0.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parabola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon