If the chord of the hyperbola x2−y2=a2 touch the parabola y2=4ax, then the locus of the middle point of these chord is _____
y^2\)
The equation of the chord of the hyperbola whose middle point is (h,k) is T=s1
i.e.,xh−yk=h2−k2
yk=xh−h2+k2
⇒ y=hkx−(h2−k2)k
We know that hte line y=mx+c will touch the parabola if c=am
Hence −(h2−k2)k=ahk
−(h2−k2)k=kah
h(h2−k2)=−ak2
⇒ h3−hk2=−ak2
h3=(h−a)k2
Hence, the locus of (h,k) is x3=(x−a)y2