If the circle x2+y2=16, cuts the rectangular hyperbola xy=8 at four points A,B,C and D, then (OA)2+(OB)2+(OC)2+(OD)216is equal to (where O be the origin.)
Open in App
Solution
If a circle cuts the hyperbola xy=c2at four points A(t1),B(t2), C(t3) and D(t4), then ∴OA2+OB2+OC2+OD2=4r2, where r is the radius of the circle and O be the origin. ∴OA2+OB2+OC2+OD2=4×16=64 ⇒OA2+OB2+OC2+OD216=4