Given circle : x2+y2−4x−8y+16=0
Equation of tangent at (2+√3,3) is T=0
⇒x(2+√3)+y(3)−2(x+2+√3)−4(y+3)+16=0
⇒√3x−y=2√3
⇒ Slope of tangent =√3
⇒ Inclination =60∘
Let C2 be the new centre after rolling.
Original centre C1≡(2,4)
and C1C2=2 (as new centre is 2 units away from C1 along the tangent)
∴C2≡(2+2cos60∘, 4+2sin60∘)≡(3,4+√3)
∴ Equation of circle in new position is : (x−3)2+(y−4−√3)2=22
⇒x2+y2−6x−2(4+√3)y+24+8√3=0 Comparing with x2+y2+2ax+2by+c=0,
a=−3, b=−(4+√3) ,c=24+8√3
a2+8b+c=1