If the circle x2+y2=a2 cuts off a chord of length 2b from the line y=mx+c,then
Consider the given equation of circle
x2+y2=a2 …….. (1)
y=mx+c …… (2)
Solving equation (1) $ (2) to, we get,
x2+(mx+c)2=a2
⇒x2+m2x2+c2+2mxc=a2
⇒(1+m2)x2+2mcx+c2−a2=0......(3)
Compare this equation
Ax2+Bx+C=0 and we get,
A=1+m2
B=2mc
C=c2−a2
Let (x1,x2) be the roots of equation (3)
Then, sum of roots and multiple of roots
⇒x1+x2=−BA ⇒x1.x2=CA
⇒x1+x2=−2mc1+m2 ⇒x1.x2=c2−a21+m2
Now, given that
Length of chord =2b
⇒√(x1−x2)2+(y1−y2)2=2b
⇒(x1−x2)2+(y1−y2)2=4b2
⇒(x1−x2)2+m2(x1−x2)2=4b2
⇒(x1−x2)2[1+m2]=4b2 since (A−B)2=(A+B)2−4AB
⇒(1+m2)[(x1+x2)2−4x1x2]=4b2
⇒(1+m2)[(−2mc1+m2)2−4(c2−a21+m2)]=4b2
⇒4(1+m2)(1+m2)[m2c2(1+m2)−(c2−a2)1]=4b2
⇒m2c2−(c2−a2)(1+m2)=b2
⇒m2c2−[c2+c2m2−a2−a2m2]=b2
⇒m2c2−c2−c2m2+a2+a2m2=b2
⇒a2+a2m2−c2−c2m2=b2
⇒a2(1+m2)−c2(1+m2)=b2
⇒(1+m2)(a2−c2)=b2
Hence, this is the answer.
Option (D) is correct.