If the circles z¯z+¯α1z+α1¯z+α1¯z+b1=0 & z¯z+¯α2z+α2¯z+α2¯z+b2=0 where b1,b2ϵR intersect orthogonally, then?
A
α1α2+¯α1¯α2=b1+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
α1α2−¯α1¯α2=b1+b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
α1¯α2+¯α1α2=b1+b2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
α1¯α2−¯α1α2=b1−b2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cα1¯α2+¯α1α2=b1+b2 Given circles are z¯z+α1z+α1¯z+b1=0 & z¯z+α2z+α2¯z+b2=0∴ Centre C1=(−α1), Radius R1=√|α1|2−b1 Centre C2=(−α2), Radius R2=√|α2|2−b2 Now using the condition fur which circles are orthogonal |C1C2|2=R21+R22⇒|α1−α2|2=|α1|2−b1+|α2|2−b2⇒|α1|2+|α2|2−(α1¯α2+α2¯α1)=|α1|2+|α2|2−(b1+b2) ⇒α1¯α2+α2¯α1=b1+b2