If the circles x2+y2+2ax+c=0 and x2+y2+2by+c=0 touch each other, then
1a2+1b2=1c
Given : x2+y2+2ax+c=0 …(1)
And x2+y2+2by+c=0 …(2)
For circle (1), we have :
Centre =(−a,0)=C1
For circle (2), we have :
Centre =(0,−b)=C2
Let the circles intersect at point P.
∴ Coordinates of P = Mid point of C1 C2
⇒ Coordinates of
P=(−a+02,0−b2)=(−a2,−b2)
Now, we have:
PC1 = radius of (1)
⇒√(−a+a2)2+(−0−b2)2=√a2−c
⇒a24+b24=a2−c …(3)
Also, radius of circle (1)=radius of circle (2)
⇒√a2−c=√b2−c
⇒a2=b2 …(4)
From (3) and (4), we have:
a22=a2−c
⇒2a2=1c
⇒1a2+1a2=1c
⇒1a2+1b2=1c