If the circles x2+y2=a and x2+y2−6x−8y+9=0, touch externally, then a=
1
x2+y2=a …(1)
and x2+y2−6x−8y+9=0 …(2)
Let circles (1) and (2) touch each other at point P.
The centre of the circle x2+y2=a,Ois(0,0)
The centre of the circle x2+y2−6x−8y+9=0, is (3, 4)
Also, radius of circle (1)=√a=OP
Radius of circle
(2)=√9+16−9=4=C1P
From figure, we have :
CO=C1P+OP
⇒32+42=4+√a
⇒5=4+√a
⇒a=1