If the coefficient of mth, (m+1)th and (m+2)th terms in the expansion of (1+x)n are in A.P., then:
(n-2m)2=n+2
Coefficient of mth,(m+1)th,(m+2)th terms are in A.P.
⇒nCm−1, nCm, nCm+1 are in A.P.
⇒2nCm = nCm−1 + nCm+1
⇒ 2(n!)m! = n!(m−1)!(n−m+1)! + n!(m+1)!(n−m−1)!
⇒2(m+1)(n-m+1)=(m+1).m + (n-m+1)(n-m)
⇒4mn = 4m2+n−n2+2=0
⇒ (n−2m)2 = n+2.