The general term of the binomial expansion
(1+x)n can be written as
Tr+1=nCrxrTherefore the coefficients of
rth,
(r+1)th and
(r+2)th terms will be
nCr−1,nCr,nCr+1In an A.P the middle term is the mean/average of the first and last terms, hence
nCr=nCr−1+nCr+122nCr=nCr−1+nCr+1
2(n!)(n−r)!r!=(n!)(n−r+1)!(r−1)!+(n!)(n−1−r)!(r+1)!
2(n−r)!r=1(n−r+1)!+1(n−1−r)!(r+1)r
2(n−r)(r)=1(n−r)(n−r+1)+1(r+1).r
2(n−r)(r)−1(n−r)(n−r+1)=1(r+1).r
2n−2r+2−rr.(n−r+1)=(n−r)(r+1)(r)
2n−3r+2(n−r+1)=(n−r)(r+1)
(2n−3r+2)(r+1)=(n−r)(n−r+1)
2nr−3r2+2r+2n−3r+2=n2−nr+n−nr+r2−r
−3r2−r+2nr+2n+2=n2−2nr+n+r2−r
4r2−4nr−n+n2−2=0
n2−n(4r+1)+4r2−2=0