If the coefficients of 5th, 6th and 7th terms in the expansion of (1+x)n are in A.P. then n=
We know the binomial expansion of (1+x)n,
(1+x)n=nC0+nC1x+nC2x2+....+nCn−1xn−1+nCxxn
Given: coefficients of 5th,6th,7th terms in the expansion are in A.P.
So, nC4,nC5,nC6 are in A.P.
The first, second and third term of an A.P., is written as a2−a1=a3−a2⇒2a2=a3+a1
Substitute the values,
2nC5=nC4+nC6
⇒2=nC4+nC6nC5
⇒2=nC4nC5+nC6nC5
⇒2=n!4!(n−4)!n!5!(n−5)!+n!6!(n−6)!n!5!(n−5)!
⇒2=5!(n−5)!4!(n−4)!+5!(n−5)!6!(n−6)!
⇒2=5×4!(n−5)!4!(n−4)(n−5)!+5!(n−5)(n−6)!6×5!(n−6)!
⇒2=5n−4+n−56
cross multiplying we get,
⇒2=30+(n−4)(n−5)6(n−4)
⇒12n−48=30+n2−4n−5n+20
⇒12n−48=50+n2−9n
⇒n2−9n−12n+48+50=0
⇒n2−21n+98=0
⇒n2−14n−7n+98=0
⇒n(n−14)−7(n−14)=0
⇒(n−7)(n−14)=0
⇒n=7,14