If the coefficients of rth,(r+1)th and (r+2)th terms in the binomial expansion of (1+y)mare in A.P., then m and r will satisfy the equation
⇒2= mCr−1 mCr+ mCr+1 mCr
⇒2=rm−r+1+m−rr+1 [∵ nCr nCr−1=n−r+1r]
⇒2=r(r+1)+(m−r)(m−r+1)(m−r+1)(r+1)
⇒2=r2+r+m2−mr+m−mr+r2−rmr+m−r2−r+r+1
⇒2=2r2+m2−2mr+mmr+m−r2+1
⇒2(mr+m−r2+1)=2r2+m2−2mr+m
⇒2mr+2m−2r2+2=2r2+m2−2mr+m
⇒2mr+2m−2r2+2−2r2−m2+2mr−m=0
⇒4mr+2m−4r2+2−m2−m=0
⇒−4mr−m+4r2−2+m2=0
∴m2−m(4r+1)+4r2−2=0