As we know that, the general term in the expansion (a+b)n is given as-
Tr+1=nCran−rbr
Therefore,
In the expansion (1+x)14,
Tr=14Cr−1114−(r−1)xr−1
Coefficient of Tr=14Cr−1
Tr+1=14Cr114−rxr
Coefficient of Tr+1=14Cr
Tr+2=14Cr+1114−(r+1)xr+1
Coefficient of Tr+2=14Cr+1
Given that Tr,Tr+1 and Tr+2 are in A.P.
Therefore,
2Tr+1=Tr+Tr+2
214Cr=14Cr−1+14Cr+1
2×14!r!(14−r)!=14!(r−1)!(14−(r−1))!+14!(r+1)!(14−(r+1))!
⇒2r!(14−r)!=1(r−1)!(15−r)!+1(r+1)!(13−r)!
⇒2r(14−r)=1(15−r)(14−r)+1(r+1)r
⇒2r(14−r)=(r2+r)+(r2−29r+210)(15−r)(14−r)(r+1)r
⇒2(15+14r−r2)=2r2−28r+210
⇒4r2−56r+180=0
⇒r2−14r+45=0
⇒(r−9)(r−5)=0
⇒r=9 or r=5
Hence the value of r can be 5 or 9.