Let the consecutive terms be (r+1)th,(r+2)th,(r+3)th in expansion of (1+x)n
Then,
nCr=165 nCr+1=330 nCr+2=462
Now,
nCr+1nCr=330165⇒n−rr+1=2⇒n−r=2r+2⇒n=3r+2⋯(1)
Also,
nCr+2nCr+1=462330⇒n−r−1r+2=231165
From equation (1), we get
⇒2r+1r+2=231165⇒330r+165=231r+462∴r=3⇒n=11