If the complex number z satisfies z+√2|z+1|+i=0, then z is :
A
−2−i
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1+i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−3−2i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1+2i
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−2−i Let z=x+iy
Given z+√2|z+1|+i=0 ⇒(x+iy)+√2|(x+iy)+1|+i=0 ⇒x+√2(√(x+1)2+y2)+i(y+1)=0
Comparing real and imaginary part, we get y=−1 and x+√2(√(x+1)2+(−1)2)=0 ⇒2((x+1)2+1)=(−x)2 ⇒x2+4x+4=0 ⇒(x+2)2=0 ∴x=−2
Hence z=−2−i