The correct option is A 0
Let the complex number z1,z2,z3 denote the vertices A, B, C of an equilateral triangle ABC. Then, if O be the origin we have OA=z1,OB=z2,OC=z3
Therefore, |z1|=|z2|=|z3|⇒OA=OB=OC
i.e., O is then circumcentre of ΔABC
Hence, z1+z2+z3=0