Let A(0,6),B(8,12) and C(8,0) be the vertices of triangle ABC.
Then c=AB=√(8−0)2+(12−6)2=√64+36=√100=10
Also, b=CA=√(8−0)2+(0−6)2=√64+36=√100=10
And a=BC=√(8−8)2+(0−12)2=√0+144=√144=12
The coordinates of the in-centre are
(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c)=(12×0+10×8+10×812+10+10,12×6+10×12+10×012+10+10)=(16032,19232)=(5,6)