Let P(1, 1),Q(2,−3), R(3, 4) be the mid-points of sides AB, BC and CA respectively of triangle ABC.
Let A(x1,y1),B(x2,y2) and C(x3,y3) be the vertices of triangle ABC.
Then, P is the mid point of AB
⇒x1+x22=1,y1+y22=1
⇒x1+x2=2andy1+y2=2 ....(1)
Q is the mid point of BC
⇒x2+x32=2,y2+y32=−3
⇒x2+x32=4andy2+y32=−3
⇒x2+x3=4andy2+y3=−6 .....(2)
R is the mid point of AC
⇒x1+x3=6andy1+y3=8 ......(3)
From (1), (2) and (3) we get
(x1,y1)≡(2,8),(x2,y2)≡(0,−6)
and (x3,y3)≡(4,0)
Then the coordinates of the centroid
=(x1+x2+x33,y1+y2+y33)
=(2+0+43,8−6+03)=(2,23)