If the coordinates of two points A and B are (3, 4) and (5, – 2) respectively. Find the coordinates of any point P, if PA = PB and area of △PAB = 10
Let the coordinates of P be (x, y). Then,
PA = PB
Distance between the points is given by
√(x1−x2)2+(y1−y2)2
⇒ PA2 = PB2
⇒ (x−3)2 + (y−4)2 = (x−5)2 + (y+2)2
⇒ x - 3y - 1 = 0 -------(1)
Now, Area of ΔPAB = 10
⇒ 12 |(4x + 3 × (-2) + 5y) - (3y + 20 - 2x)| = 10
⇒ |(4x + 5y - 6) - (2x + 3y + 20)| = 20
⇒ |6x + 2y - 26| = ± 20
⇒ 6x + 2y - 26 = ± 20
⇒ 6x + 2y - 46 = 0 or, 6x + 2y - 6 = 0
⇒ 3x + y - 23 = 0 or, 3x + y - 3 = 0
Solving x - 3y - 1 = 0 and 3x + y - 23 = 0 we get x = 7, y = 2.
Solving x - 3y - 1 = 0 and 3x + y - 3 = 0, we get x = 1, y = 0.
Thus, the coordinates of P are (7, 2) or (1, 0).