If the cubic polynomials x3+ax2+11x+6 and x3+bx2+14x+8 may have a common factor of the form x2+px+q, then
Let, x³+ax²+11x+6=0 …(1)
And, x³+bx²+14x+8=0 …(2)
Subtract (1) from(2)
(b-a)+3x+2=0 …(3)
x²+px+q = 0 …(4)
Comparing (3) and(4)
We get, b-a=1 =>b=a+1 , p=3 and q=2
Now, b+q=(a+1)+2= a+3 =a+p
So, a+p=b+q