If the curve satisfying yy1sinx=cosx(sinx−y2) passes through (π2,2), then the value of 3(y(π6))2 is equal to
A
81
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
61
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
41
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
21
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C41 Given differential equation, dydxy=cotx(sinx−y2) Take y2=t⇒2ydy=dt ⇒dt2dx=cotx(sinx−t) ⇒dtdx+2tcotx=2cosx Integrating Factor,I=e∫2cotxdx=e2ln(sinx) ⇒te2ln(sinx)=∫2cosxe2ln(sinx)dx ⇒te2ln(sinx)=2sin3x3+C ⇒y2sin2x=2sin3x3+C Given y(π/2)=2⇒C=103 3(y(π/6))2=41