The correct options are
B The number of values of θ∈[−π,π] for which 2 different roots exists is 4
D The greatest possible difference between two roots for θ∈[−π,π] is 2
f(x)=x3−x2(sinθcosθ+sinθ+1)+ x(sin2θcosθ+sinθcosθ+sinθ)−sin2θcosθ
f(1)=0
⇒x3−x2(sinθcosθ+sinθ+1)+x(sin2θcosθ+sinθcosθ+sinθ)−sin2θcosθ(x−1)=0⇒(x−1)(x−sinθcosθ)(x−sinθ)=0
The roots are
x=1,sinθcosθ,sinθ
For the given condition,
x21+(x22x21)+x23=2
When
x1=sinθ,x2=sinθcosθ & x3=1
For θ∈R there exist infinite triplets of x1,x2,x3
For two different roots to exist -
sinθ=sinθcosθ≠1⇒θ=0,−π,π
sinθcosθ=1⇒sin2θ=2(not possible
sinθ=1⇒θ=π2
4 values of θ∈[−π,π] exists for which 2 different roots exists.
For
θ∈(−π,π)−{0,π2} the equation has 3 different roots.
The greatest possible difference between two roots if θ∈[−π,π] is
|1−sinθ|≤2|1−sin2θ2|≤2∣∣∣sin2θ2−sinθ∣∣∣≤2