The correct option is C 2
dydx−2xy1+x2=0
⇒dyy=2xdx1+x2⇒∫dyy=∫2xdx1+x2
Let I=∫2xdx1+x2
Assuming 1+x2=t⇒2xdx=dt
I=∫dtt⇒I=ln|t|=ln|1+x2|
Hence, the general solution is ln|y|=ln|1+x2|+ln|C|
⇒y=C(1+x2)
Putting x=0,y=1, we get
C=1
So, the required curve is,
y=1+x2
∴y(1)=2