If the curves x=y4 and xy=k cut at right angles, then (4k)6 is equal to
Open in App
Solution
4y3dydx=1&xdydx+y=0
At (x1,y1) m1=14y31,m2=−y1x1
For curves to intersect at right angles m1m2=−1 ⇒14.y31×−y1x1=−1 ⇒14.y61=1(∵x1=y41) y61=14
Now, x1y1=k⇒k=y51 ⇒k6=y301=(14)5 ∴(4k)6=46×k6=4