The correct option is A a = 2, b = 3
We have, f(x)={ax2+b,x<−1bx2+ax+4,x≥−1∴f′(x)={2ax,<−12bx+a,x≥−1Since, f(x) is differentiable at x=−1, therefore it is continuous at x=−1 and hence,limx→−1−f(x)=limx→−1+f(x)⇒a+b=b−a+4⇒a=2and also, limx→−1−f(x)=limx→−1+f(x)⇒−2a=−2b+a⇒3a=2b⇒b=3 (∵a=2)Hence, a=2,b=3