If the determinant Δ=∣∣
∣∣3−2sin3θ−78cos2θ−11142∣∣
∣∣=0, then the value of sinθ is
A
13 or 1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1√2 or √32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0 or 12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C0 or 12 Applying R2→R2+4R1 and R3→R3+7R1 we get ∣∣
∣∣3−2sin3θ50cos2θ+4sin3θ1002+7sin3θ∣∣
∣∣=0 ⇒2[5(2+7sin3θ)−10(cos2θ+4sin3θ)]=0 ⇒2+7sin3θ−2cos2θ−8sin3θ=0 ⇒2−2cos2θ−sin3θ=0 ⇒sinθ(4sin2θ+4sinθ−3)=0 ⇒sinθ=0 or (2sinθ−1)=0 or (2sinθ+3)=0 ⇒sinθ=0 or sinθ=12